Different Biodegradable Silica Structures In Drug Delivery

Mika Jokinen

DelSiTech &

Turku University of Applied Sciences
Different Morphologies of Biodegradable Silica

- "Several levels of morphology"; different forms & structures
- monoliths, fibers, coatings, particles, nanoscale aggregates
- pore structure
- "chemical structure"; molecular level
- water (amount) in silica structures

Can be varied on a large scale
Different Morphologies of Biodegradable Silica

Implantable
- Fibers
- Coatings
- Monolithic implants

Injectable
- Microspheres
- Gel in a flowing form

...all used as biomaterials
Different Morphologies of Biodegradable Silica

- Silica can be prepared by **sol-gel technology**
 - mimics silica found in nature
 - variable amount of H_2O in resulting silica

- SiO_2 **hydrogels** (wet & soft)
 ➤

- SiO_2 **xerogels** (dry & hard)

$\text{SiO}_2 \cdot n\text{H}_2\text{O}$
Different Morphologies of Biodegradable Silica

Why variation in morphology?

- Drug delivery device for many different kinds of biologically active agents (size, sensitivity etc.)

- Drug delivery device for different administration routes
 - also minimally invasive delivery
Silica by Sol-Gel Method – Why?

- The first sol-gel synthesis of silica was done already in 1860’s
- in 1970’s and 1980’s studies on sol-gel silica in drug delivery → focus on pore structure (only)

→ In general very much studied technology
 - nanoparticle synthesis, controlled pore structures (with self-assembling polymers or other surface active agents), hybrids & composites etc.

 … but what about the use as a biomaterial & toxicology?

→ We focused on biodegradation with plain silica

DelSiTech the drug delivery company www.delsitech.com

Turku University of Applied Sciences www.turkuamk.fi
Silica by Sol-Gel Method – Why?

- In early 1990’s Turku Biomaterials Research Group observed “weak signals” related to controlled release that was based on biodegradation of silica
 → sol-gel technology

- good to combine with incorporation of drugs or active agents of any size by adding them into a liquid state during the process before a solid phase formation
 → effective encapsulation
 → sol-gel technology
1. Reactions & nanoparticle formation and subsequent nanoparticle aggregation

2. Adjustment of properties (e.g., pH, temp.) prior to drug addition

3. Form-giving to implantable or injectable form

Encapsulation of Drugs in Silica

Addition as long as the system is flowing, i.e., when the liquid phase dominates
Biodegradation of Silica

- Silica is biodegradable!
 - even crystalline (e.g., quartz, but only few ppm)
 - amorphous silica about 130-150 ppm

→ In spite of the low solubility → adjustable biodegradation
 - Processing at 20-40°C → from few days to few months

- low solubility → **dynamic system needed**
 (liquid change & flow as it occurs in the body)
- low solubility → possible to store implants in water!

Biodegradation by dissolution only → No enzymatic degradation
Sol-Gel: Dual Nature of Silica Polymerisation

"molecular" polymerisation & aggregation

"Molecular" polymerisation

Aggregation by coagulation

"Chemical aggregation" of very small particles?
Sol-Gel: Dual Nature of Silica Polymerisation

…results in different structures

Pore structure

"chemical structure":
degree of condensation

+ due to colloidal structure it is possible to prepare silica structures, even implants that contain >90% of water
Controlled Biodegradation of Silica

t ≤ 40°C

Match between molecular & nanoscale (overall impact of molecular structure is greater)

SPECIFIC SURFACE AREA (SSA) m²/g

<table>
<thead>
<tr>
<th></th>
<th>Q₂/%</th>
<th>Q₃/%</th>
<th>Q₄/%</th>
<th>Q₄/(Q₂+Q₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-</td>
<td>18,4</td>
<td>27,6</td>
<td>54,0</td>
<td>1,17</td>
</tr>
<tr>
<td>Bs-</td>
<td>0</td>
<td>79,6</td>
<td>20,4</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Bm12: SSA = 3,4
Am03: SSA = 637
Bm11: SSA = 43
Am01: SSA = 697
Bs15: SSA = 4,3

Bm12: SSA = 3,4
Am03: SSA = 637
Bm11: SSA = 43
Am01: SSA = 697
Bs15: SSA = 4,3

CUMULATIVE DISSOLUTION OF SiO₂ %

MONOLITHS + BSA
MONOLITHS
MICROSPHERES
MONOLITHS + BSA

Controlled Biodegradation of Silica

DelSiTech the drug delivery company www.delsitech.com

www.turkuamk.fi
Release Mechanisms

Monolithic rod + small drug molecule with high water solubility: diffusion-controlled release

15-70% / week

Cum. Release of Propranolol [%]

Time [h]

0 50 100 150 200 250

0 20 40 60 80 100

Am06, Tris
Am07, Tris
Am08, Tris
Silica Degradation-based Release

- Monolithic rod + albumin: **matrix biodegradation-controlled** release; practically no release without the SiO$_2$ matrix dissolution!

- The same observed for viral vectors and low water-soluble small-molecule drugs

Figure 6
In vivo Study on Therapeutic Viral Vector

- Survival of mice with pancreatic cancer treated with therapeutic viruses encapsulated in DelSiTech’s silica

Mock = silica implant without viruses

From L. Kangasniemi, M. Koskinen, M. Jokinen, H. Jalonen, A. Hemminki et al., Extended Release of Adenovirus from Silica Implants In vitro and In Vivo (Gene Therapy 16, 2009)
One-pot Synthesis of Injectable Silica

Possible to inject with very thin needles, e.g., 31G (Ø = ca. 0.25 mm) → suitable also for intraocular delivery
Regelling / Solidification of Injectable Silica

Addition of solidifying agent

Solidification

After injection a semi-solid, implant-like structure

DelSiTech the drug delivery company www.delsitech.com
Benefits of Biodegradable Silica

- **Steady & sustained release;** days to months
 - large molecules & other agents
 - small molecules with low water solubility

- **Labile drugs retain their activity** in silica
 - high H₂O content =mild conditions
 - proof of concept for several labile drugs, **only solution to viruses** to our knowledge

- **Effective encapsulation**
 - injectable, implantable

- **Options for delivery, also minimally invasive**
 - implants & injectable formulations (26-31G)
Thank you for your attention!

Morphologies from nature: diatoms with a silica shell

"the jewels of the sea"